Joint probability density function estimation by spectral estimate methods
نویسندگان
چکیده
Estimation of probability density functions (PDFs) of a given random variable (r.v.) is involved in topics related to codification, speech or whenever a short record of data is available but a greater amount is needed. Existing methods go from the so-called Minimum Description-Length method, up to others based on the maximisation of the differential entropy imposing constraints on the moments of the r.v. In this paper we propose the estimate a PDF function by means of spectral estimate methods, since the positiveness and real character of any PDF function allow us to deal with it as a power spectrum density function. Particularly, the minimum variance method is focused because it can be generalised to multidimensional problems, being used in this paper to estimate the joint-PDF function of a multidimensional r.v.
منابع مشابه
فشرده سازی اطلاعات متغیر با زمان با استفاده از کد هافمن
Abstract: In this paper, we fit a function on probability density curve representing an information stream using artificial neural network . This methodology result is a specific function which represent a memorize able probability density curve . we then use the resulting function for information compression by Huffman algorithm . the difference between the proposed me then with the general me...
متن کاملBayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملMultivariate Quantile Function Models
Multivariate quantiles have been defined by a number of researchers and can be estimated by different methods. However, little work can be found in the literature about Bayesian estimation of joint quantiles of multivariate random variables. In this paper we present a multivariate quantile function model and propose a Bayesian method to estimate the model parameters. The methodology developed h...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملWavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables
Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.
متن کامل